角運動量の公式集

しょっちゅう忘れてしまう角運動量の公式。僕がよく使う順に掲載します。
  • Wigner-Eckert theorem
  • \begin{equation} \langle j' m' |O_{JM}|jm \rangle =\frac{(-1)^{j-m}}{\sqrt{2J+1}}\langle j' m' j -m | JM \rangle \langle j' || O_{J} || j \rangle \label{eq:WE} \end{equation}
  • Transformation of Clebsch-Gordan coefficient to 3j symbol
  • \begin{equation} \langle j_{1} m_{1} j_{2} m_{2} | J M \rangle =(-1)^{j_{1}-j_{2}-M}\sqrt{2J+1} \left( \begin{array}{ccc} j_{1} & j_{2} & J \\ m_{1} & m_{2} & -M \\ \end{array} \right) \label{eq:2} \end{equation}
  • Special case of 3j symbol
  • \begin{equation} \left( \begin{array}{ccc} j & j & 0 \\ m & -m & 0 \\ \end{array} \right) =(-1)^{j-m}(2j+1)^{-1/2} \label{eq:3} \end{equation}
  • Orthogonlity of 3j symbol
  • \begin{eqnarray} \sum_{m_{1}m_{2}} \left( \begin{array}{ccc} j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & m_{3} \\ \end{array} \right) \left( \begin{array}{ccc} j_{1} & j_{2} & j_{3}' \\ m_{1} & m_{2} & m_{3}' \\ \end{array} \right) =(2j_{3}+1)^{-1/2}\delta_{j_{3}j_{3}'}\delta_{m_{3}m_{3}'} \end{eqnarray}
  • Symmetry of Crebsch-Gordan coefficient
  • \begin{eqnarray} \langle j_{1} m_{1} j_{2} m_{2} | j_{3} m_{3} \rangle =(-1)^{j_{1}-j_{3}+m_{2}}\sqrt{\frac{2j_{3}+1}{2j_{1}+1}}\langle j_{3}m_{3}j_{2}-m_{2} | j_{1} m_{1} \rangle \end{eqnarray}
  • The addition theorem of spherical harmonics
  • \begin{equation} P_{l}(\theta)=\frac{4\pi}{2l+1}\sum_{m}Y_{lm}(\hat{r})Y_{lm}^{*}(\hat{r}'), {\rm where}\; \theta \;{\rm is \; angle \; between}\; \vec{r} \;{\rm and}\; \vec{r}'. \end{equation}
  • Contraction rule
  • \begin{equation} Y_{l_{1}m_{1}}(\hat{r})Y_{l_{2}m_{2}}(\hat{r}) =\sum_{lm}\sqrt{\frac{(2l_{1}+1)(2l_{2}+1)(2l+1)}{4\pi}} \left( \begin{array}{ccc} l_{1} & l_{2} & l \\ m_{1} & m_{2} & m \\ \end{array} \right) Y_{lm}^{*}(\hat{r}) \left( \begin{array}{ccc} l_{1} & l_{2} & l \\ 0 & 0 & 0 \\ \end{array} \right) \end{equation}
  • Useful ansatz
  • \begin{equation} \langle l'm' | Y_{LM} | lm \rangle =\sqrt{\frac{(2l'+1)(2l+1)(2L+1)}{4\pi}} \left( \begin{array}{ccc} l' & l & L \\ m' & m & M \\ \end{array} \right) \left( \begin{array}{ccc} l' & l & L \\ 0 & 0 & 0 \\ \end{array} \right) \end{equation} \begin{equation} \langle l' || Y_{LM} || l \rangle =(-1)^{l'}\sqrt{\frac{(2l'+1)(2l+1)(2L+1)}{4\pi}} \left( \begin{array}{ccc} l' & L & l \\ 0 & 0 & 0 \\ \end{array} \right) \end{equation}
  • Plane wave expansion
  • \begin{equation} e^{i\vec{k}\cdot\vec{r}} =4\pi\sum_{lm}i^{l}j_{l}(kr)Y_{lm}(\hat{k})Y_{lm}^{*}(\hat{r}) \end{equation}
  • 3j to 6j
  • \begin{equation} \begin{split} \sum_{\mu_{1}\mu_{2}\mu_{3}}(-1)^{\mu_{1}+\mu_{2}+\mu_{3}} & \left( \begin{array}{ccc} j_{1} & l_{2} & l_{3} \\ m_{1} & \mu_{2} & -\mu_{3} \\ \end{array} \right) \left( \begin{array}{ccc} l_{1} & j_{2} & l_{3} \\ -\mu_{1} & m_{2} & \mu_{3} \\ \end{array} \right) \left( \begin{array}{ccc} l_{1} & l_{2} & j_{3} \\ \mu_{1} & -\mu_{2} & m_{3} \\ \end{array} \right)\\ & =(-1)^{l_{1}+l_{2}+l_{3}} \left( \begin{array}{ccc} j_{1} & j_{2} & j_{3} \\ m_{1} & m_{2} & m_{3} \\ \end{array} \right) \left\{ \begin{array}{ccc} j_{1} & j_{2} & j_{3} \\ l_{1} & l_{2} & l_{3} \\ \end{array} \right\} \end{split} \end{equation}
  • Useful ansatz
  • \begin{equation} \left\{ \begin{array}{ccc} j_{1} & j_{2} & j_{3} \\ 0 & j_{3} & j_{2} \\ \end{array} \right\} =(-1)^{j_{1}+j_{2}+j_{3}}\sqrt{(2j_{2}+1)(2j_{3}+1)} \end{equation}
  • When \( X_{L}=\left[O_{L_{1}}O_{L_{2}} \right]^{L} \)
  • \begin{equation} \langle j'||X_{L}||j\rangle =(2L+1)(-1)^{j'+j+L}\sum_{j''} \left\{ \begin{array}{ccc} L_{1} & L_{2} & L\\ j & j' & j'' \end{array} \right\} \langle j'||O_{L_{1}}||j''\rangle\langle j'' || O_{L_{2}} || j \rangle \end{equation}
  • When \( X_{J}=\left[T_{L}U_{S} \right]^{J} \)
  • \begin{equation} \langle j'(l' s') ||X_{J}|| j(l s) \rangle =\sqrt{(2j_{1}'+1)(2j+1)(2J+1)} \left\{ \begin{array}{ccc} l' & l & L\\ s' & s & S\\ j' & j & J \end{array} \right\} \langle l'||T_{L}||l\rangle \langle s' || U_{S} || s \rangle \end{equation} \begin{equation} \langle j'm'(l' s') | T_{k} \cdot U_{k}| jm(l s) \rangle =(-1)^{l+s'+j} \left\{ \begin{array}{ccc} j & s' & l'\\ k & l & s\\ \end{array} \right\} \langle l' || T_{k} || l \rangle \langle s' || U_{k} || s \rangle \delta_{jj'}\delta_{mm'} \end{equation}
  • Other cases \begin{equation} \langle j'(l' s) || T_{k} || j(l s) \rangle =(-1)^{l'+s+j+k}\sqrt{(2j'+1)(2j+1)} \left\{ \begin{array}{ccc} l' & j' & s\\ j & l & k\\ \end{array} \right\} \langle l' || T_{k} || l \rangle \end{equation} \begin{equation} \langle j'(l s') || U_{k} || j(l s) \rangle =(-1)^{l+s+j'+k}\sqrt{(2j'+1)(2j+1)} \left\{ \begin{array}{ccc} s' & j' & l\\ j & s & k\\ \end{array} \right\} \langle s' || U_{k} || s \rangle \end{equation}